Fall 2015, MATH-566 Minimum-Weight Perfect Matching in Bipartite Graphs

Source: Bill,Bill,Bill

Let G = (V, E) be a graph. Let $c : E \to \mathbb{R}^+$ is a cost. Find a perfect matching minimizing M that is minimizing the sum of costs of the edges in the matching.

1: Find minimum-weight perfect matching in the following graph:

2: Write the minimum-weight perfect matching as an integer program (IP) on a graph G = (V, E).

3: Consider a relaxation of (IP) to a linear program (P) and write the dual (D) of (P).

Theorem Birkhoff: If G is a bipartite graph, then solution to (P) is integral. (Why?)

4: Formulate complementary slackness conditions for optimal solution \mathbf{x} of (P) and optimal solution \mathbf{y} of (D).

Algorithm idea: Maintain an optimal solution to (D), create a solution to (P) that

5: Find initial solutions to (P) and (D), where solution to (D) is feasible and the solutions satisfy complementary slackness. (Solution to (P) does not have to be feasible.)

6: If the solution to (D) is fixed, which edges can be used in matching? (Denote the edges by $E_{=}$.)

Algorithm sketch, suppose a perfect matching exists.

- start with initial solution **x**,**y**.
- Take edges $E_{=}$ and try to find a perfect matching M by growing augmenting forests
- If M is not perfect, there are some outer of F vertices adjacent to edges in E but not in $E_{=}$.
- Update \mathbf{y} to allow more edges in $E_{=}$ and repeat.

7: What to do if there is no perfect matching in $E_{=}$? Consider the following example. Number on edge e is c(e), number at vertex v is y_v . How to modify **y** to allow the tree to grow?

Recall that during growing the tree, we encountered edges like e_5 that were not possible to drop from the tree. The above algorithm does not work for edges with e_5 .

Our algorithm works only for **bipartite** graphs. Can be (nontrivially) generalized for all graphs. (The linear program has to be stronger by adding more constraints - for all odd vertex subsets, at least one edge is in the cut, blossoms need to be treated carefully.)